Accès gratuit
Review
Numéro
Rev. Fr. Geotech.
Numéro 167, 2021
Numéro d'article 5
Nombre de pages 15
DOI https://doi.org/10.1051/geotech/2021018
Publié en ligne 26 mai 2021
  • ISO 2394. 2015. General principles on reliability for structures. [Google Scholar]
  • EN 1990. 2002. Eurocode 0: Basis of structural design. [Google Scholar]
  • EN 1997. 2004. Eurocode 7: Geotechnical design. [Google Scholar]
  • JCSS (Joint Committee on Structural Safety). 2001. JCSS Probabilistic Model Code. [Google Scholar]
  • Comité Français de Mécanique des Sols et de Géotechnique. 2018. Recommandations sur la prise en compte du gonflement des terrains argileux dans le dimensionnement des ouvrages d’infrastructure (version provisoire V9). [Google Scholar]
  • Recommandation de l’AFTES GT16R2F1. 2018. Prise en compte des effets induits par le creusement sur les constructions avoisinantes dans la conception et la réalisation des ouvrages souterrains. [Google Scholar]
  • Ang AHS, Tang WH. 2007. Probability concepts in engineering: emphasis on applications to civil and environmental engineering, 2nd ed. Wiley. [Google Scholar]
  • Baecher GB Christian JT. 2003. Reliability and statistics in geotechnical engineering. Wiley. [Google Scholar]
  • Fellin W, Lessmann H, Oberguggenberger M, Vieider R (eds.). 2005. Analyzing uncertainty in civil engineering. Springer. [CrossRef] [Google Scholar]
  • Fenton GA, Naghibi F, Dundas D, Bathurst RJ, Griffiths DV. 2015. Reliability-based geotechnical design in the 2014 Canadian Highway bridge design code. Can Geotech J 53(2): 236–251. [CrossRef] [Google Scholar]
  • Gulvanessian H, Calgaro J-A, Holicky M. 2012. Designer’ guide to Eurocode: basis of structural design EN 1990, 2nd ed. ICE Publishing. [Google Scholar]
  • Hejazi Y, Dias D, Kastner R. 2008. Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotech 2008(3): 251–258. [CrossRef] [Google Scholar]
  • Huder J, Amberg G. 1970. Quellung im Mergel, Opalinuston und Anhydrit. Schweiz Bauzeitung 43: 975–980. [Google Scholar]
  • Leca E, New B. 2007. ITA/AITES Report 2006 on settlements induced by tunnelling in soft ground. Tunnel Undergr Space Technol 22: 119–149. [CrossRef] [Google Scholar]
  • Lees A. 2016. Geotechnical finite element analysis – A practical guide. ICE Publishing. [CrossRef] [Google Scholar]
  • Lemaire M. 2009. Structural reliability. Wiley. [CrossRef] [Google Scholar]
  • Marelli S, Sudret B. 2014. UQLab: A framework for uncertainty quantification in MATLAB. In: 2nd International Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2014), July 13–16, 2014, University of Liverpool, United Kingdom, pp. 2554–2563. [Google Scholar]
  • Marelli S, Schobi R, Sudret B. 2019. UQLab User Manual – Structural reliability (rare event estimation), Report #UQLab-V1.3-107. ETH Zürich, Switzerland: Chair of Risk, Safety and Uncertainty Quantification. [Google Scholar]
  • Marelli S, Lamas C, Konakli K, Mylonas C, Wiederkehr P, Sudret B. 2021. UQLab User Manual – Sensitivity analysis, Report #UQLab-V1.4-106. ETH Zurich, Switzerland: Chair of Risk, Safety and Uncertainty Quantification. [Google Scholar]
  • Melchers RE, Beck AT. 2018. Structural reliability analysis and prediction, 3rd ed. Wiley. [Google Scholar]
  • Phoon KK, Retief JV. 2016. Reliability of geotechnical structures in ISO 2394. CRC Press. [CrossRef] [Google Scholar]
  • Roubos AA, Schweckendiek T, Brinkgreve RBJ, Steenbergen RDJM, Jonkman SN. 2020. Finite element-based reliability assessment of quay walls. Georisk: Assess Manage Risk Eng Syst Geohazards. DOI: 10.1080/17499518.2020.1756344. [Google Scholar]
  • Schanz T, Vermeer PA, Bonnier PG. 1999. The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics. Rotterdam: Balkema. [Google Scholar]
  • Xiao J, Luo Z, Martin JR, Gong W, Wang L. 2016. Probabilistic geotechnical analysis of energy piles in granular soils. Eng Geol 209: 119–127. [CrossRef] [Google Scholar]
  • Zevgolis IE, Deliveris AV, Koukouzas NC. 2018. Probabilistic design optimization and simplified geotechnical risk analysis for large open pit excavations. Comput Geotech 103: 153–164. [CrossRef] [Google Scholar]
  • Zhang LM, Ng AMY. 2005. Probabilistic limiting tolerable displacements for serviceability limit state design of foundations. Géotechnique 55(2): 151–161. [CrossRef] [Google Scholar]
  • Zhang W, Goh ATC. 2012. Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns. Tunnel Undergr Space Technol 32: 221–230. [CrossRef] [Google Scholar]
  • Zhang Y, Toutlemonde F. 2020. Calibrating partial safety factors in line with required reliability levels for concrete structures. Eur J Environ Civil Eng. DOI: 10.1080/19648189.2020.1824820. [Google Scholar]
  • Zhang Y, Commend S, Martin-Lavigne Q, Lacoste J. 2020a. The White House Station of the Grand Paris Express Project. Struct Eng Int 30(4): 460–467. DOI: 10.1080/10168664.2019.1701966. [CrossRef] [Google Scholar]
  • Zhang Y, Commend S, Taherzadeh R, Sinagra O, Lacoste J. 2020b. Analysis, modelling and surveys of plastic clays − Feedback from the White House metro station. Tunnels et espace souterrain 271: 114–138. [Google Scholar]
  • Zhang Y, Commend S, Taherzadeh R, Sinagra O, Lacoste J. 2021. Études expérimentales et simulations numériques des argiles plastiques – Cas de la L14 gare Maison Blanche. In: Congrès AFTES 2021, Paris, France. [Google Scholar]
  • ZSOIL (User manual ZSoil.PC). 2018. Soil, rock and structural mechanics in dry or partially saturated media. Lausanne, Switzerland: ZACE Services Ltd, Software Engineering. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.