Free Access
Review
Issue |
Rev. Fr. Geotech.
Number 167, 2021
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/geotech/2021018 | |
Published online | 26 May 2021 |
- ISO 2394. 2015. General principles on reliability for structures. [Google Scholar]
- EN 1990. 2002. Eurocode 0: Basis of structural design. [Google Scholar]
- EN 1997. 2004. Eurocode 7: Geotechnical design. [Google Scholar]
- JCSS (Joint Committee on Structural Safety). 2001. JCSS Probabilistic Model Code. [Google Scholar]
- Comité Français de Mécanique des Sols et de Géotechnique. 2018. Recommandations sur la prise en compte du gonflement des terrains argileux dans le dimensionnement des ouvrages d’infrastructure (version provisoire V9). [Google Scholar]
- Recommandation de l’AFTES GT16R2F1. 2018. Prise en compte des effets induits par le creusement sur les constructions avoisinantes dans la conception et la réalisation des ouvrages souterrains. [Google Scholar]
- Ang AHS, Tang WH. 2007. Probability concepts in engineering: emphasis on applications to civil and environmental engineering, 2nd ed. Wiley. [Google Scholar]
- Baecher GB Christian JT. 2003. Reliability and statistics in geotechnical engineering. Wiley. [Google Scholar]
- Fellin W, Lessmann H, Oberguggenberger M, Vieider R (eds.). 2005. Analyzing uncertainty in civil engineering. Springer. [CrossRef] [Google Scholar]
- Fenton GA, Naghibi F, Dundas D, Bathurst RJ, Griffiths DV. 2015. Reliability-based geotechnical design in the 2014 Canadian Highway bridge design code. Can Geotech J 53(2): 236–251. [CrossRef] [Google Scholar]
- Gulvanessian H, Calgaro J-A, Holicky M. 2012. Designer’ guide to Eurocode: basis of structural design EN 1990, 2nd ed. ICE Publishing. [Google Scholar]
- Hejazi Y, Dias D, Kastner R. 2008. Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotech 2008(3): 251–258. [CrossRef] [Google Scholar]
- Huder J, Amberg G. 1970. Quellung im Mergel, Opalinuston und Anhydrit. Schweiz Bauzeitung 43: 975–980. [Google Scholar]
- Leca E, New B. 2007. ITA/AITES Report 2006 on settlements induced by tunnelling in soft ground. Tunnel Undergr Space Technol 22: 119–149. [CrossRef] [Google Scholar]
- Lees A. 2016. Geotechnical finite element analysis – A practical guide. ICE Publishing. [CrossRef] [Google Scholar]
- Lemaire M. 2009. Structural reliability. Wiley. [CrossRef] [Google Scholar]
- Marelli S, Sudret B. 2014. UQLab: A framework for uncertainty quantification in MATLAB. In: 2nd International Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2014), July 13–16, 2014, University of Liverpool, United Kingdom, pp. 2554–2563. [Google Scholar]
- Marelli S, Schobi R, Sudret B. 2019. UQLab User Manual – Structural reliability (rare event estimation), Report #UQLab-V1.3-107. ETH Zürich, Switzerland: Chair of Risk, Safety and Uncertainty Quantification. [Google Scholar]
- Marelli S, Lamas C, Konakli K, Mylonas C, Wiederkehr P, Sudret B. 2021. UQLab User Manual – Sensitivity analysis, Report #UQLab-V1.4-106. ETH Zurich, Switzerland: Chair of Risk, Safety and Uncertainty Quantification. [Google Scholar]
- Melchers RE, Beck AT. 2018. Structural reliability analysis and prediction, 3rd ed. Wiley. [Google Scholar]
- Phoon KK, Retief JV. 2016. Reliability of geotechnical structures in ISO 2394. CRC Press. [CrossRef] [Google Scholar]
- Roubos AA, Schweckendiek T, Brinkgreve RBJ, Steenbergen RDJM, Jonkman SN. 2020. Finite element-based reliability assessment of quay walls. Georisk: Assess Manage Risk Eng Syst Geohazards. DOI: 10.1080/17499518.2020.1756344. [Google Scholar]
- Schanz T, Vermeer PA, Bonnier PG. 1999. The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics. Rotterdam: Balkema. [Google Scholar]
- Xiao J, Luo Z, Martin JR, Gong W, Wang L. 2016. Probabilistic geotechnical analysis of energy piles in granular soils. Eng Geol 209: 119–127. [CrossRef] [Google Scholar]
- Zevgolis IE, Deliveris AV, Koukouzas NC. 2018. Probabilistic design optimization and simplified geotechnical risk analysis for large open pit excavations. Comput Geotech 103: 153–164. [CrossRef] [Google Scholar]
- Zhang LM, Ng AMY. 2005. Probabilistic limiting tolerable displacements for serviceability limit state design of foundations. Géotechnique 55(2): 151–161. [CrossRef] [Google Scholar]
- Zhang W, Goh ATC. 2012. Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns. Tunnel Undergr Space Technol 32: 221–230. [CrossRef] [Google Scholar]
- Zhang Y, Toutlemonde F. 2020. Calibrating partial safety factors in line with required reliability levels for concrete structures. Eur J Environ Civil Eng. DOI: 10.1080/19648189.2020.1824820. [Google Scholar]
- Zhang Y, Commend S, Martin-Lavigne Q, Lacoste J. 2020a. The White House Station of the Grand Paris Express Project. Struct Eng Int 30(4): 460–467. DOI: 10.1080/10168664.2019.1701966. [CrossRef] [Google Scholar]
- Zhang Y, Commend S, Taherzadeh R, Sinagra O, Lacoste J. 2020b. Analysis, modelling and surveys of plastic clays − Feedback from the White House metro station. Tunnels et espace souterrain 271: 114–138. [Google Scholar]
- Zhang Y, Commend S, Taherzadeh R, Sinagra O, Lacoste J. 2021. Études expérimentales et simulations numériques des argiles plastiques – Cas de la L14 gare Maison Blanche. In: Congrès AFTES 2021, Paris, France. [Google Scholar]
- ZSOIL (User manual ZSoil.PC). 2018. Soil, rock and structural mechanics in dry or partially saturated media. Lausanne, Switzerland: ZACE Services Ltd, Software Engineering. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.