Free Access
Issue
Rev. Fr. Geotech.
Number 170, 2022
Article Number 3
Number of page(s) 14
DOI https://doi.org/10.1051/geotech/2022001
Published online 08 February 2022
  • AFCEN. 2017. RCC-CW. Règles de conception et réalisation pour le génie civil des centrales électronucléaires. [Google Scholar]
  • Alkaya D, Ҫobanoğlu I, Yeşil B, Yildiz MŞ. 2011. The evaluation of stone column and jet grouting soil improvement with seismic refraction method: Example of Poti (Georgia) railway. Int J Phys Sci 6(28): 6565–6571. [Google Scholar]
  • Axtell PJ, Stark TD. 2008. Increase in shear modulus by soil mixing and jet grout methods. DFI J 2(1). [Google Scholar]
  • Bard PY, Chazelas JL, Gueguen P, Kham M, Semblat JF. 2005. Chapter 5: Site-city interaction. Oliveira CS, Roca A, Goula X, eds. Assessing and Managing Earthquake Risk. Springer, 375 p. [Google Scholar]
  • Bommer JJ, Stafford PJ, Alarcón JE. 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bull Seism Soc Am 99(6). [Google Scholar]
  • Briançon L, Liausu P, Plumelle C, Simon B. 2018. Amélioration et renforcement des sols. Éditions Le Moniteur. [Google Scholar]
  • Brûlé S, Javelaud E, Bitri A. 2010. Analyse de la réponse sismique sur un site après travaux d’amélioration des sols par compactage dynamique haute énergie. In: Conférence franco-maghrébine en ingénierie géotechnique, Tunis. [Google Scholar]
  • Chu J, Varaksin S, Klotz U, Mengé P. 2009. State of the art report : procédés de constructions. In: 17th International Conference on Soil Mechanics and Geotechnical Engineering, 5–9 October 2009, Alexandrie, Egypte. [Google Scholar]
  • Consoli NC, Fonini A, Maghous S, Schnaid F, Viana da Fonseca A. 2013. Experimental analysis of the mechanical properties of artificially cemented soils and their evolution in time. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris. [Google Scholar]
  • Dejong JT, Fritzges MB, Nüsslein K. 2006. Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11): 1381–1392. [CrossRef] [Google Scholar]
  • Devesa G. 2015. Code_Aster, Documentation n°U4.84.31. Commande DEFI_SOL_EQUI (2015). https://www.code-aster.org/V2/doc/v12/fr/man_u/u4/u4.84.31.pdf. [Google Scholar]
  • EN 1998-1:2005 (AFNOR). 2005. Eurocode 8 – Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. [Google Scholar]
  • Guilloux A, Berthelot P, Zaghouani K, Schlosser F. 2009. Les fondations du Pont de Radès-La Goulette (Tunisie) : reconnaissances, conception et essais de pieux. In: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. [Google Scholar]
  • Hamidi B, Varaksin S, Nikraz H. 2011. Dynamic compaction for treating millions of square meters of sand. In: International Conference on Advances in Geotechnical Engineering, Perth, Australia. [Google Scholar]
  • Jacquet M. 2016. Code_Aster, Documentation n°R4.05.06. Méthode linéaire-équivalente pour la propagation des ondes en 1D (2016). https://www.code-aster.org/V2/doc/v13/fr/man_r/r4/r4.05.06.pdf. [Google Scholar]
  • Javelaud EH, Semblat J-F. 2017. Effets de site sismiques pour les ouvrages de surface. Techniques de l’Ingénieur, C260. [Google Scholar]
  • Jimenez R, Roman F. 2012. A comparison of soil improvement achieved using different vibro methods. In: Proceedings of the International symposium on ground improvement IS-GI, Brussels. [Google Scholar]
  • Karray M, Lefebvre G, Ethier Y, Bigras A. 2010. Assessment of deep compaction of the Péribonka dam foundation using “modal analysis of surface waves” MASW. Can Geotech J 47: 312–326. [CrossRef] [Google Scholar]
  • Kham M, Semblat JF, Bard PY, Dangla P. 2006. Seismic site-city interaction: Main governing phenomena through simplified numerical models. Bull Seismolog Soc Am 96(5): 1934–1951. [CrossRef] [Google Scholar]
  • Kirstein JF. 2012. General report, session 1: Vibro and impact compaction. International Symposium on Ground Improvement ISGI (2012). [Google Scholar]
  • Kokusho T. 1980. Cyclic triaxial test of dynamic soil properties for wide range strain. Soils Found 20(2). [Google Scholar]
  • Meza-Fajardo KC, Papageorgiou AS, Semblat JF. 2015. Identification and extraction of surface waves from three-component seismograms based on the Normalized Inner Product. Bull Seismolog Soc Am 105(1): 210–229. [CrossRef] [Google Scholar]
  • Mitchell JK. 1981. Soil improvement: State-of-the-art. In: Proc Tenth Int Conf on Soil Mechs, Found Eng, June 1981, Stockholm, Sweden, 4, pp. 509–565. [Google Scholar]
  • Robertson PK, Sasitharan S, Cunning JC, Sego DC. 1995. Shear-wave velocity to evaluate in situ state of Ottawa sand. J Geotech Eng 121(3): 262–273. [CrossRef] [Google Scholar]
  • Saxena SK, Reddy RK. 1987. Mechanical behavior of cemented sands. Report n°IIT-CE-8701, Department of Civil Engineering, Illinois Institute of Technology. [Google Scholar]
  • Sigismond M, Groupe de travail d’EDF/SEPTEN. 1983. The use of soil improvement techniques in the realization of the French Nuclear Power Programme. In: Proceedings of the Eighth European Conference on Soil Mechanics and Foundation Engineering, organized by the Finnish Geotechnical Society, 23–26 May 1983, Helsinki. [Google Scholar]
  • Sirles PC. 1988. Case study: Shear wave velocity measurements before and after dynamic compaction of cohesionless soil deposits. In: 1988 SEG Annual Meeting, pp. 290–293. [Google Scholar]
  • Sirles PC, Viksne A. 1990. Site-specific shear wave velocity determination for geotechnical engineering applications. Soc Explor Geophys Investig Geophys: 121–132. [Google Scholar]
  • Van Passen LA, Ghose R, Van der Linen TJM, Van der Star WRL, Van Loosdrecht MCM. 2010. Quantifiying biomediated ground improvement by Ureolysis: Large-scale biogrout experiment. J Geotech Geoenviron Eng 136(12): 1721–1728. [CrossRef] [Google Scholar]
  • Varone C, Lenti L, Martino S, Semblat JF. 2021. Spatial variability of the urban ground motion in a highly heterogeneous site-city configurations. Bull Earthq Eng 19: 27–45. [CrossRef] [Google Scholar]
  • Yoshida N. 2015. Seismic ground response analysis. Geotechnical, Geological and Earthquake Engineering 36. Springer. [Google Scholar]
  • Zentner I. 2017. Code_Aster, Documentation n°U4.36.04. Commande GENE_ACCE_SEISME (2017). https://www.code-aster.org/V2/doc/default/fr/man_u/u4/u4.36.04.pdf. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.